Data Link Layer
(Sicherungsschicht)
Medium Access Control
(Zugriffsverfahren)

References:
[Bosser99]
[Wa0102]
OSI-model for local networks with partition of the link layer in media access control and logical link control, as defined by IEEE 802.
Multiple Access Protocols
(Vielfachzugriffsprotokolle)

- **MAC**: Medium (Multiple) Access Control
- Influence
 - Medium (Übertragungsmedium)
 - Network Topology (Netztopologie)
- Performance Aspects
Multiple Access Protocols

<table>
<thead>
<tr>
<th>Random Access Methods</th>
<th>Scheduling Methods</th>
<th>Reservation Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure Aloha</td>
<td>decentralized:</td>
<td>TDMA</td>
</tr>
<tr>
<td></td>
<td>- Token Passing</td>
<td>Time Division Multiple Access</td>
</tr>
<tr>
<td></td>
<td>- Register Insertion Ring</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- DQDB</td>
<td>CDMA</td>
</tr>
<tr>
<td>Slotted Aloha</td>
<td></td>
<td>Frequency Division Multiple Access</td>
</tr>
<tr>
<td>Carrier Sensing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reservation Aloha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aloha with collision resolution methods</td>
<td>centralized:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Polling</td>
<td></td>
</tr>
</tbody>
</table>
Competitive Methods

- Random Access Schemes (Zufallszugriff)
 - Every station with data to send can principally access the channel
 - Transmission successful, when only one station accesses the medium
 - Concurrent access of more than one station at the same time leads to errors
Scheduling Methods (*Zuteilungsverfahren*)

- Perfectly scheduled
- Centralized:
 - Polling:
 - a master station polls each station in turn
- Decentralized: all stations are equal
 (Token Passing, Register Insertion, DQDB)
Reservation Methods
(Reservierungsverfahren)

- Examples: TDMA, FDMA, CDMA
- Management of a channel by a central station
- Channel with synchronous multiplexing techniques with subchannels
- Assignment of one or more channels on request
- Request in a fixed subchannel through random access or scheduling method
- Combined Methods
Network Topology

- **Polling**: (usually) star topology
 master in the center
- **Ring / Bus**: pairs of fiber channels,
 often separate rings or busses in both directions
 (dual ring, dual bus)
- **Mobile Radio Networks**
 usually use random access methods for reservation
- **Reliability (Ausfallsicherheit) and Robustness**:
 - Polling ?
 - Random access methods ?
 - Critical: error in central station
 - Critical: high load
Performance Evaluation of Methods

- Offered Traffic (Verkehrsangebot)
- Transmission Time (Übertragungszeit)
- Throughput (Durchsatz)

- Which methods are to be preferred for high and low traffic?
- How does the offered traffic influence throughput and transmission time?

- Random access methods lead to lower transmission times for low or high traffic?
- Reservation and Scheduling Strategies lead to lower transmission times for low or high traffic?
Aloha Protocols

- Development at the University of Hawaii end of the 60s for the transmission of packet data in a radio network between terminals and a central computer
- Basic method of all random access methods
- Easy to implement, no complex coordination
- Unsuccessful transmissions are repeated
- Robust against transmission errors
- Used in mobile radio networks, e.g.,
 - GSM (Global System for Mobile Communication) or
 - TETRA (Trans-European Trunked Radio, digitaler Bündelfunk) for reservation
- Collisions
Assumptions for the Evaluation of Collision Resolution Methods (Kollisionsauflösungsverfahren) (1)

- \(m \) sending stations and exactly one receiver station
- One jointly used channel from all sending stations to the receiver
- Channel close to error free
- Data packets generated in all stations with Poisson distribution with rate \(\frac{\lambda}{m} \), all packets of equal length, \(X \) transmission time of a packet
- Immediate Transmission for Pure (Unslotted) Aloha
- Transmission in the next time slot for Slotted Aloha
- Transmission successful when only one sender accesses the channel during the transmission
- Collisions for concurrent access
- Immediate feedback: sender knows immediately whether or not the transmission was successful
Assumptions for the Evaluation of Collision Resolution Methods (2)

- No loss: sender retransmits packet until the transmission is successful
- Station is backlogged, as long as the transmission of a packet is repeated
- No buffering assumption: stations in a backlogged state do not generate additional packets
- Infinity assumption: the number m of stations are assumed to be infinite, i.e., $m \to \infty$
- Probability for generating a packet at a specific station in time T:

\[P\{\text{Generate a Packet in time } T\} = \frac{\lambda T}{m} e^{-\frac{\lambda T}{m}} \]

(Poisson Distribution)
Pure Aloha (*unslotted*)

- Basic random access method
- Station sends packet immediately after arrival
- Packet is received successfully when no other station sends during the same time
- Acknowledgement by receiver immediately after transmission
- Collision: two or more stations sending during the same time, no acknowledgement
- Sender sends packet again after a random time until packet is successfully transmitted (Acknowledgement)
Analysis of pure Aloha (1)

- Packet generation rate λ [packets/s]
- Packet transmission time X
- Maximum packet transmission rate $\mu = 1/X$
- Offered traffic $\rho = \lambda / \mu$
- Channel access rate (incl. repetitions) g [packets/s]
- Ratio to maximum transmission rate $G = g / \mu = gX$
- Rate of successful channel accesses s [packets/s]
- Throughput $S = s / \mu = sX$
- Infinitely many stations in the network $m \rightarrow \infty$
- Simplification: Poisson distribution of the number of channel accesses of newly generated packets and repetitions: g
Analysis of pure Aloha (2)

- Average number of channel accesses until packet was transmitted successfully?
- \(P\{\text{successful access}\} = \frac{s}{g} = \frac{S}{G} \)

Channel access: Poisson distribution ⇔ Packet interarrival time: neg. exponential distribution
Formulas for pure Aloha

\[P\{ T \geq X \} = \int_{X}^{\infty} ge^{-gt} dt = e^{-gX} = e^{-G} \]

\[P\{ \text{success} \} = P\{ T_{\text{before}} \geq X \} P\{ T_{\text{after}} \geq X \} = e^{-2G} \]

\[S = Ge^{-2G} \]

\[S_{\text{max}} = \frac{1}{2e} = 0.184 = \rho_{\text{max}} = 18.4\% \text{ for } G = 0.5 \]
Throughput “Pure Aloha” protocol

\[S \]

\[\frac{1}{2e} \]

\[\rho \]

\[G_{stab} \]

\[G_{lab} \]
Slotted Aloha

- Receiver defines pattern of time slots of length X for the channel access
- Stations access the channel synchronously to the predefined slot pattern
- Otherwise: see pure Aloha
- Synchronization leads to complete overlay of packets sent in the same time slot
- \Rightarrow Maximum Throughput relative to Pure Aloha?

Maximum Throughput is doubled!
Formulas Slotted Aloha

\[P\{1 \text{ access}\} = P\{1|X\} = gXe^{-gX} \]

Rate of successfully used time slots:

\[P\{1 \text{ access}\} \mu = s = S\mu \]

or \(P\{1 \text{ access}\} = S \)

with \(\mu = 1/X \) this results in

\[S = Ge^{-G} \]

\[S_{\text{max}} = 1/e = 0.368 \text{ for } G=1 \]
Throughput Slotted Aloha Protocol
Strategies for Collision Resolution

Binary Exponential Backoff

- Channel Access Probability q_r
- After j erroneous accesses q_r is set to 2^{-j}
- Stabilization
- Goal: Region of $G=1$ with high throughput S

or other more complex methods see Pseudo-Bayes-Algorithm [Bossert99]
Max. Throughput < 0.587
Tree Method: Throughput < 0.46
Tree Algorithm (1)

- Throughput < 0.43

Example for Tree Algorithm

Time slots of the collision resolution period (Kollisionsauflösungsperiode)
Tree Algorithm (2)

- Throughput < 0.46

Presentation of subsets as trees.

Time Slots of the Collision Resolution Period
FCFS-Algorithm (1)

- Throughput < 0.4878

Example for the procedure of the FCFS-Algorithm
FCFS-Algorithm (2)

State diagram of the FCFS Algorithm
Carrier-Sensing-Methods

- Prerequisite: all stations can “hear” each other
- Common Topology: Bus
- Collision Avoidance through so-called Carrier Sensing (Abhören des Mediums auf Trägersignal)
- CSMA = Carrier Sense Multiple Access
- “Polite discussion” (höflich geführte Diskussion)
- Persistence:
 - Persistent CSMA: channel is constantly monitored, access as soon as channel is free
 - Non-persistent CSMA: monitor channel, if busy -> random time delay, listen to channel, access as soon as channel is free
 - p-persistent CSMA: Mixture, listen to channel until free, access with probability p, random time delay, listen to channel
\[\tau = \text{max. signal propagation delay between 2 stations} \]

\[L = \text{mean packet length [bit]} \]

\[C = \text{channel transmission rate [bit/s]} \]

\[X = \text{mean packet transmission delay} \]

\[X = \frac{L}{C} \]

Parameter \(\alpha = \frac{\tau}{X} = \frac{\tau C}{L} \)
CSMA: Throughput

- Non-persistent CSMA
- \(m \rightarrow \infty \) stations
- States of the channel:
 - free, successful transmission, collision
- \(k \): number of stations ready to send a packet
- Other assumptions: see Aloha Protocol
CSMA: Throughput (1)

CSMA throughput ($\alpha = 0.1$)

\[S_{\text{max}} \approx \frac{1}{1 + 2\sqrt{\alpha}} \]
CSMA: Throughput (2)

CSMA throughput for different α

- $S(k)$
- $G(k)$

$\alpha = 0.0001$
$\alpha = 0.001$
$\alpha = 0.01$
$\alpha = 0.1$
Collision detection by “sensing” the “carrier” while sending

Station 1 Station 2

Start of transmission

Collision detection
stop transmission immediately

free channel

Start of transmission

Collision detection
stop transmission immediately

free channel

↓

Time
Ethernet: CSMA/CD System

- **Origin:** Xerox proposal for local networks, coaxial cable, Bus, 10 Mbit/s
- **Standard IEEE 802.3**
 \((\text{IEEE} = \text{Institute of Electric and Electronic Engineers})\)
- **Kilometer range**
- **Collision detection** depends on signal propagation, i.e. configuration of stations in the network
- **Collision resolution:** Binary-Exponential-Backoff
- **Detailed analysis** by simulation
- **Estimation of throughput** \(S\) for max. signal propagation:

\[
S \geq \frac{e^{-\alpha G}}{\alpha + \frac{1}{G} + 2\alpha \left(1 - e^{-\alpha G} \right) + e^{-\alpha G}}
\]
CSMA / CA (Collision Avoidance)

- Collision detection, e.g. in radio networks usually not possible, sent signal conceals external received signal

- **Collision avoidance strategy:**
 - Sequence of access for all stations in the network
 - Segment time into time slots of duration δ
 - δ slightly larger than max. signal propagation
 - Fixed or Random assignment of slots to stations
 - Station is only allowed to access assigned time slot
 - Time pattern is interrupted, as soon as a station is in sending mode
 - Time slot is an *implicit token*

- **Example:** IEEE 802.11b WLAN
 (installation at University of Bremen / NW1)
Polling

- **Central assignment of sending right**
- **Formerly mainframe access for terminals**
 - Mainframe as master
 - Terminals are polled cyclically
 - Simple implementation
 - Disadvantage: overhead of polling idle terminals results in considerable overhead for a large number of stations

- Improvement by so-called **Binary-Countdown-Protocol**
 - Stations are assigned network IDs
 - Stations broadcast their network IDs simultaneously
 - Stations with highest network ID bit = 1 wins
 - Repeat until station with highest network ID bit ready to send remains
 - In each step the address space is divided by 2: \(k = \lceil \log_2 m \rceil \)
 - Fairness?
Binary-Countdown-Protocol: Example

Station A (0010)
Station B (0100)
Station C (1001)
Station D (1010)
Token-Passing Methods

- Examples:
 - Token-Bus IEEE 802.4
 - Token-Ring IEEE 802.5
 - FDDI (Fiber Distributed Data Interface)

- General Token-Passing Characteristics:
 - Scheduling Method:
 - Station receives sending right through a so-called *token*
 - Transfer of the sending right by sending the short token to the next station
 - No Collisions
 - Limit of max. time until sending right is acquired is possible (e.g. by limiting time or number of packets), suitable for real time services, priorities
Token-Bus (IEEE 802.4)

- Token release after a max. of 10 ms
- Logical Ring implemented on bus topology
- Can handle hardware failures
- Changes of the logical ring structure

- **Deleting stations:**
 - Controlled: Station informs predecessor
 - Uncontrolled, e.g. by error: after releasing a token, Station watches if successor releases token itself, otherwise a message is sent to all stations, successor (of successor) answers or logical ring is newly established.

- **Adding stations:** Stations regularly ask new stations to send a notification.

- **Establishing new logical ring:** if a station has not noticed any access to the bus over a sufficiently long period of time, the station defines itself as the first station and stations are added with the same procedure as above.

- This standard has been withdrawn by the IEEE
Token-Ring (IEEE 802.5)

- Point-to-point connections of neighbouring stations
- Unidirectional mode of operation
- Data is passed on until it reaches the sender again
- Stations that are switched off or damaged are bridged (switch in the interface)
- Tokens are 3 bytes in length and consist of a start delimiter, an access control byte, and an end delimiter.

- Lost token, duplicate token:
 Monitor Station (arbitrary but fixed station) generates new token after max. token rotation time
FDDI - Fiber Distributed Data Interface

- ISO Standard ISO-9314 (ANSI)
- Fiber with 100 Mbit/s
- Copper cables can also be used (CDDI)
- Range is up to 200 km
- Logical topology is ring-based token network
- Timed Token Protocol based on 802.4
- FDDI network usually contains two rings
 - Primary ring
 - Secondary ring (for backup purpose)
- Deployed as backbone network in 90s
FDDI - Fiber Distributed Data Interface

😊 Standard
😊 High throughput

😊 Not developed further
😊 Only one data rate
😊 More expensive than Fast Ethernet and Gigabit Ethernet
DQDB (Distributed Queue Dual Bus)

- IEEE 802.6 Standard (1991)
- 155 Mbit/s, Data and Voice
- Scheduling Method
- Decentralized organization, synchronized system, priorities
- ATM-like cell structure with 48 byte payload
 (ATM: Asynchronous Transfer Mode)
 PLT (Payload Type) only 2 bit,
 SPR=Segment Priority
- MAN = Metropolitan Area Network
 or HSLAN = High Speed Local Area Network
- 2 unidirectional busses, reverse direction of transmission,
 not limited in range/distance
DQDB Topology

Cell Generator

Terminator

Cells

Terminator

Cell Generator

Cells

....
DQDB Cell Format

1 octet

ACF - Access Control Field

VCI - Virtual Channel Identifier
20 bit

PLT | SPR

HEC - Header Error Control

Information Field
48 Octets

Bit 1: Busy
Bit 2: Slot Type
Bit 3: PSR
Bit 4-5: RES
Bit 6: Req 2
Bit 7: Req 1
Bit 8: Req 0
DQDB Mode of Operation

- Cell Generator generates empty cells (Slots, busy bit = 0)
- Transmission of cells from generator to terminator
- Reservation Mechanisms:
 - on the other bus, by setting the request bit of a cell
- Stations: Counter for request bits, a number of empty cells corresponding to this counter are not used
- Is DQDB fair?
- Example: 30 km fiber cable, 155 Mbit/s, how many cells are in transit? What is the effect of a very active node upstream?
- Bandwidth balancing:
 - each node has to let a certain percentage $0 < f < 1$ of empty cells pass without using them